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In this article, we propose and test a new model for measurement error in analytical chemistry. Often, 
the standard deviation of analytical errors is assumed to increase proportionally to the concentration 
of the analyte, a model that cannot be used for very low concentrations. For near-zero amounts, the 
standard deviation is often assumed constant, which does not apply to larger quantities. Neither model 
applies across the full range of concentrations of an analyte. By positing two error components, one 
additive and one multiplicative, we obtain a model that exhibits sensible behavior at both low and high 
concentration levels. We use maximum likelihood estimation and apply the technique to toluene by 
gas-chromatography/mass-spectrometry and cadmium by atomic absorption spectroscopy. 

KEY WORDS: Atomic absorption spectroscopy (AAS); Coefficient of variation; Detection limit; 
Gas-chromatography/mass-spectrometry (GC/MS); Maximum likelihood; Quantita- 
tion level. 

1. INTRODUCTION: MEASUREMENT NEAR 
THE DETECTION LIMIT 

Traditionally, the description of the precision of an an- 
alytical method is accomplished by applying two separate 
models, one for describing zero and near-zero concen- 
trations of the analyte (the compound that the analytical 
method is designed to measure) and another for quantifi- 
able amounts. This traditional approach leaves a "gray 
area," of analytical responses in which the precision of 
the measurements cannot be determined. The model gov- 
erning quantifiable amounts assumes that the likely size 
of the analytical error is proportional to the concentration. 
If this model is applied to analytical responses in the gray 
area, then there is an implicit assumption that the analyti- 
cal error becomes vanishingly small as the measurements 
approach 0. From long experience, this assumption ap- 
pears to be invalid. Similarly, if the zero-quantity model 
is applied, there is an implicit assumption that the abso- 
lute size of the analytical error is unrelated to the amount 
of material being measured. Based on similar empirical 
information, this assumption also cannot be supported. 

The new model presented in this article resolves these 
difficulties by providing an estimate of analytical preci- 
sion that varies between the two extremes described by 
the traditional models. The model provides a distinct ad- 
vantage over existing methods by describing the precision 
of measurements across the entire usable range. Examples 
are given of two different analytical methods, an atomic 
absorption spectroscopy analysis for cadmium and a gas- 
chromatography/mass-spectrometry analysis for toluene, 

both of which support the validity of the new model. The 
new model is applicable to a wide variety of situations 
including nonlinear calibration and added-standards cali- 
bration. Discussion is provided on the application of the 
new model to some common issues such as determina- 
tion of detection limits, characterization of single samples, 
and determination of sample size required for inference to 
given tolerances. 

Many measurement technologies have errors whose 
size is roughly proportional to the concentration-this is 
often true over wide ranges of concentration (Caulcutt and 
Boddy 1983). One common way to describe this constant 
coefficient of variation (CV) model is that the measured 
concentration x is given by 

log(x) = log(u) + r (1.1) 
or 

x = te', (1.2) 

where ,t is the true concentration and r7 is a normally 
distributed analytical error with mean 0 and standard de- 
viation ao. This model is widely used, but it fails to make 
sense for very low concentrations because it implies ab- 
solute errors of vanishingly small size. 

On the other hand, one often considers the case of an- 
alyzing blanks (samples of zero concentration) and data 
near the detection limit by the model 

x = J,+ (1.3) 

with normally distributed analytical error E. This is used 
for calibration with tt = 0 and for the determination of 
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detection limits (Massart, Vandingste, Deming, Michotte, 
and Kaufman 1988). It is, however, a bad approximation 
over wider ranges of concentration because it implies that 
the absolute size of the error does not increase with the 
concentration, and this is rarely true of analytical methods. 

The solution proposed here is a combined model 
that reflects two types of errors. For example, in a 
gas-chromatography/mass-spectrometry (GC/MS) analy- 
sis one type of error is in the generation and measurement 
of peak area, which will generally have errors of size pro- 
portional to the concentration. The other type of error 
comes from the fact that, even when fed with a blank sam- 
ple, the output is not a flat line but still retains some small 
variation. There are many sources of error in such an 
analysis; the idea here is merely to classify them into two 
types, additive and multiplicative. The model proposed is 

x = /et1 +', (1.4) 

where there are two analytical errors, r - N(0, o2,) and 
6 - N(0, or2), each normally distributed with mean 0. 
Here r] represents the proportional error that is exhibited 
at (relatively) high concentrations and E represents the 
additive error that is shown primarily at small concentra- 
tions. Another way of writing this model is via a linear 
calibration curve as 

y = a + fpe1l + 6, (1.5) 

where y is the observed measurement (such as peak area 
a GC). Note that the new model approximates a constant 
standard deviation model for very low concentrations and 
approximates a constant CV model for high concentra- 
tions. 

The approach proposed here should be contrasted with 
an alternative method, which is to model the standard de- 
viation as a linear function of the mean concentration. The 
latter approach should work well over restricted ranges but 
suffers from some disadvantages when used over a wide 
range. First, the predicted standard deviation at zero con- 
centration need bear little resemblance to the measured 
value when one regresses the standard deviation of repli- 
cates on the mean of the replicates. The proposed new 
model allows the data near 0 to determine the predicted 
standard deviation near 0 and the data for large concen- 
trations to determine the standard error for large concen- 
trations. Second, the new model allows the errors at large 
concentrations to be lognormal, rather than normal, which 
is in accord with much experience. Third, there is a more 
plausible physical mechanism for the existence of multi- 
plicative and additive errors than there is for a standard 
deviation that is linear in the mean. A comparison of the 
predicted standard deviations from the two models is given 
in a later example. 

If viewed in terms of the coefficient of variation, the 
picture is that large concentrations have a constant CV, 
whereas small concentrations have an increasing CV that 
tends to infinity as the concentration approaches 0. This 

bears some relationship to what Hall and Selinger (1989) 
called the "Horwitz trumpet" (Horwitz 1982; Horwitz, 
Kamps, and Boyer 1980). There are substantial differ- 
ences however, that are discussed in Appendix A. 

As an example, suppose that a. = 1 part per billion 
(ppb) and ar = .1. Then the standard deviation of blanks 
is 1 ppb, so the detection limit (in one definition) might 
be set at 30c = 3 ppb. At this concentration, measure- 
ments have a standard deviation of 1.04 ppb (using the new 
model), barely above the value at zero concentration-this 
is, a coefficient of variation of .35. One definition of the 
quantitation level is concentration in which the coefficient 
of variation falls to .2, the practical quantitation level (En- 
vironmental Protection Agency 1989). Because r, = .1, 
the coefficient of variation is .1 for large concentrations. 
Using the new model, the critical level at which the CV is 
.2 can be found by solving (.2x)2 = (. lx)2 + (1)2 for x, 
which yields x = 5.77. Thus, at 6 ppb, the Environmen- 
tal Protection Agency's practical quantitation level (PQL) 
has been reached. This calculation is only possible be- 
cause of the new model-neither of the standard models 
can be used to compute the PQL. 

It has been stated that values below the PQL do not yield 
useful quantitative information about the concentration of 
the analyte (e.g., Massart et al. 1988). The incorrect- 
ness of this idea has been pointed out (e.g., ASTM-D4210 
1990 [ASTM 1987]). The new model more clearly demon- 
strates the usefulness of measurements below quantitation 
levels. The proposed model allows determination of the 
error structure of an analytical method near the detection 
limit and so provides an easy way to give precisions for 
such measurements, as well as the average of several such. 

2. ESTIMATION 

The approach we used is based on maximum likelihood 
estimation. An observed value x differs from the theoret- 
ical value L because of the two errors t and E, which are 
not directly observed. Any combination of r and ? that 
satisfies c = x - uieq is possible. Consequently, the like- 
lihood associated with a set (a., a r) of parameters given a 
set of n measurements xi with known concentrations /ui is 

I 2 e- r1 (2T,7)e- (x-le) 2/(2re)dq. (2.1) 
i = J oo 2.7r r rie 

Maximizing this likelihood leads to estimates of the nec- 
essary parameters ao, and a,. More complex models, such 
as the estimation of a calibration curve, can be estimated 
in the same fashion, using maximum likelihood. For ex- 
ample, the calibration model (1.5) has likelihood 

i/ e- 1e -2/(2r2) e-(0_-a-pe)2/(22)d (2.2) 
iOn oo 27rtaen e 

Once estimates - and 5 have been derived, the preci- 
sion of any measured value in the form (1.4) is (using the 
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formula for the variance of a lognormal random variable) 

/ + {2 -2e (e?2 
- 

I), (2.3) 

which can be estimated by substituting estimated values 
for the parameters. This formula illustrates the key feature 
of the new model-when /, is small, the error is nearly 
constant in size; when /u is large, the size of the error is 
roughly proportional to it. In the calibration form (1.5), 
the estimated concentration is 

i (y - = -y = ' 
(a - a + A/e7 + e). (2.4) 

If the covariance matrix (a, f) is V, then a straightforward 
delta-method calculation shows that the variance of ,j is 

g'Vg + a 2/ + ? -/2e (er - 1), (2.5) 

where g = (/-l, -/u-1). Note that, when sample sizes 
are sufficiently large that a and /3 can be regarded as 
known, the g'Vg term disappears, and this basically coin- 
cides with (2.3). 

The computational approach used is outlined in Ap- 
pendix B. From the usual maximum likelihood estimation 
theory, the estimates of the parameters are normal with 
asymptotic variances given by the negative inverse of the 
information matrix, which we use for the matrix V men- 
tioned previously when needed. 

2.1 Elaborations of the Basic Model 

The model we are developing will be of no practical use 
unless it accurately describes the behavior of a wide range 
of analytical data. If a test data set consists of replicated 
measurements at a variety of levels from 0 to (say) 500 
ppb, then the precision at 0 will be ar and the CV at 500 
ppb will be approximately cr, so these two parameters 
can be chosen to fit almost any behavior at the extremes. 
The model, if correct, says much more. From these two 
parameters, the exact way in which the standard deviation 
gradually rises in the transition region can be completely 
predicted. Thus it would make sense to compare the preci- 
sion at each level implied by the model and the parameter 
fits to the estimated precision from the replicates. If the 
model in its simplest form does not fit the data, then an 
elaborated form may be required. One example of the 
possible need for an elaboration is a nonlinear calibration 
function. With a nonlinear calibration function w(/t; 0), 
the model becomes 

y = a + w(/; 0)e1 + ?. (2.6) 

The parameters can be determined by maximum likeli- 
hood as before. 

Another problem that may arise is that the variance may 
not depend on the mean for large concentrations in the way 
implied by the model. An elaboration to help resolve this 
problem is to specify that Yr - N (0, or2 V (p/)) (Carroll and 
Ruppert 1988). This allows for a different behavior than 
implied by lognormal errors. 

A third potential elaboration is needed to address the 
case in which a labeled standard is used to calibrate mea- 
sured values, which adjusts for recovery efficiency. Con- 
sider an analytical method to determine the concentration 
of a volatile organic such as toluene. One method of in- 
creasing accuracy is to spike the sample with a known 
concentration v of deuterated toluene and determine the 
estimated concentration ,Z of toluene and ud of deuterated 
toluene. One estimate of the true concentration of toluene 
is /,adj = 'ilV/ld, which adjusts for recovery. If 

y = a + fi/e'1 + E1 (2.7) 
and 

(2.8) Yd = a + ve'12 + 62, 

then the precision of 'adj depends on the precision of 2, 
the precision of d, and their covariance. Using the delta 
method we derive an approximate variance for 'Aadj as 

var(5adj) a^2v2 2/d2 + ^V l 2/4 - I v2^-// 

(2.9) 

where a2, a2, and a;, are derived from a multivariate 
version of (2.5). In this case, it is necessary to have suffi- 
cient data to estimate the covariances of the errors in (2.7) 
and (2.8). 

3. APPLICATIONS 

In this section we describe some ways that the new 
model can be used. We concentrate especially on appli- 
cations in environmental monitoring, where detection and 
measurement of low levels of toxic substances may be 
quite important. Generally, these applications assume that 
the parameters of the model have been determined, so we 
will generally describe the ideas in terms of the simple 
model (1.4). Extensions to the case in which calibration 
error is also to be accounted for are straightforward. 

3.1 Detection Limits 

According to the preceding model, the observations at 
true concentration iL = 0 are normally distributed with 
standard deviation a,. If r replicates are used, then any 
average of measured values greater than D = 3a/ q// is 
extremely unlikely to have come from a zero concentra- 
tion sample. Use of the exact method of setting confidence 
intervals described in Section 3.2 allows the precise deter- 
mination of the uncertainty. Of course, this assumes that 
the replicates are true reruns of the entire process; other- 
wise the error may not be reduced by a factor of Ir- but 
by a much smaller amount. 

An implication of this rule for environmental moni- 
toring is that the accumulation of measurements at low 
levels, even individually below the individual observation 
detection limit can still provide quantitative evidence of 
the concentration of a toxic substance. If the safe level is 
near or below the detection limit, then it might make sense 
to require replicate measurements (to reduce the effective 
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detection limit) and to require the quantitative recording 
of measurements even when they are below the individual 
observation detection limit. 

3.2 Uncertainty of a Single Measurement 

There are two primary approaches to this problem, an 
exact solution and a normal or lognormal approximation. 
In the exact solution, we construct a confidence interval for 
the true concentration by locating the points on either side 
of the measured value where a hypothesis test just rejects. 
If a measurement x is obtained, and a 95% confidence 
interval is desired, then we need to find values gL and tlu 
such that 

oo 1 1 e-L /(2)(l-((x-ALe')//ad)dr? = .025 

(3.1) 
and 

_ 2/(212 )(4P(x-/zue')/aE)d7 = .025, 
- _oo 27, 

(3.2) 

where <() is the standard normal distribution function. 
This can be done by numerical solution of these equations, 
which yields a 95% confidence interval (tzL, /U'). 

An approximate method is based on the estimated vari- 
ance of x given by 

V(x) = a2 + x2e" (eT - 1). (3.3) 

For low levels of x (those in which the first term domi- 
nates), the distribution of x is approximately normal. An 
approximate 95% confidence interval is formed as 

x 1.96vV(x). (3.4) 

For high levels of x [those in which the second term in 
V(x) dominates] ln(x) is approximately normally dis- 
tributed with variance a2 so that a 95% confidence interval 
for 1 is 

(exp(ln(x) - 1.96o,), exp(ln(x) + 1.96a,)). (3.5) 

Note that this interval, although symmetric on the loga- 
rithmic scale, is asymmetric on the original measurement 
scale. 

3.3 Uncertainty of an Average of Several 
Measurements 

Here, the exact method of confidence-interval determi- 
nation would be burdensome because it would require the 
computation of a difficult convolution, so confidence in- 
tervals must be based on the approximate normality of x 
(for low levels) or of ln(x) (for high levels). For low 
levels, the average, x, of n measurements will be ap- 
proximately normally distributed with standard deviation 
~/V(x)/n. For larger values of x, it will be better to per- 
form inference using the logarithms of the data, which 
will be more nearly normally distributed. The average 

Table 1. Cadmium Concentrations by AAS 

Cadmium 
concentration (ppb) Absorption (x 100) 

0 .0 -.7 -.1 -.6 
2.7784 5.5 5.9 6.1 6.1 
9.675 21.8 22.5 23.2 23.1 

22.9716 53.4 53.6 50.9 53.8 
31.7741 74.1 74.0 71.2 71.5 
43.2067 94.6 99.6 99.4 101.1 

of the logarithms of n measurements will have approxi- 
mate standard deviation a,/v/n. Some further work will 
be needed to determine when inference should be based 
on the measurements and when on the logarithms. An- 
other possible technique to improve inference is to use a 
normalizing transformation that depends on the parameter 
values. 

3.4 Determination of Sample Size 

The approximate sample size required to determine a 
concentration to a particular precision depends on the con- 
centration as well as the precision desired. Suppose that 
we wish to choose the number of replicates r so that 
the chance of detecting a specified concentration that is 
above the safe level is sufficiently high. For example, 
suppose that the safe level is .1 ppb and the standard de- 
viation parameters are a, = .2 ppb and a, = .1. Suppose 
that it was held to be important to detect a concentration 
of .3 ppb. At that concentration, the standard deviation of 
an average of r replicates is 

[2 + e2 2 )]/ 

= /[.04 + (.09)e01 (e?01 - 1)]/r 

= /.0409/r 

= .202/a/7. 

(3.6) 

(3.7) 

(3.8) 

Using a normal approximation, the distance between the 
safe level .1 ppb and the concentration .3 ppb in standard 
deviation units is 

(.2/.202)v/f = .989v7. (3.9) 

Table 2. Standard Deviation of Absorption and 
Log-Absorption 

Cadmium Absorption Log-absorption 
concentration std. dev. std. dev. 

0 .351 
2.7784 .283 .0488 
9.675 .645 .0287 

22.9716 1.360 .0260 
31.7741 1.564 .0215 
43.2067 2.821 .0289 
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Table 3. Initial Estimates From Pooled Data and Final 
Parameters by MLE for Cadmium Data 

Parameter Starting value Final value 

a -.0963 -.3691 
? 2.292 2.315 
r,) .02511 .02507 
ar, .3188 .2970 

For the chance of detection to be .95, we require .989/7 > 
1.645 or r > 2.77. In this case, the number of replicates 
should be at least 3. 

4. EXAMPLES 

In this section, we present two examples of analytical 
methods and examine the fit of the two-component model. 
The first example consists of graphite-furnace atomic ab- 
sorption spectroscopy (AAS) measurements of cadmium, 
for known concentrations from 0 to 43 ppb, each quadru- 
ply replicated. The second example is GC/MS measure- 
ments of toluene from 4.6 picograms to 15 nanograms. For 
descriptions of these methods see Willard, Merritt, Dean, 
and Settle (1988). In both cases we use the calibration 
form (1.5) with likelihood (2.2). 

4.1 Cadmium by Atomic Absorption Spectroscopy 

The instrument used for these measurements was a 
Perkin-Elmer model 5500 graphite furnace atomic absorp- 
tion spectrometer with a model HGA-500 furnace con- 
troller. The tubes were pyrolytically coated; injections 
were made onto L'vov platforms. A deuterium arc lamp 
was used for background correction. Table 1 shows the 
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Figure 2. Actual and Predicted Standard Deviation for Cad- 
mium by AAS. The dots represent the standard deviation 
of the replicates and the solid line is the predicted standard 
deviation using (3.4) and (3.5) as appropriate. 

AAS measurements, and Table 2 gives the standard de- 
viation of the replicate measurements of absorbance and 
the standard deviation of the logarithms of the replicates. 
Note that the measurements at the two lowest concentra- 
tions appear to have a constant standard deviation of the 
measured concentration and the measurements at the four 
highest concentrations appear to have a constant standard 
deviation of the measured log-concentration. Therefore, 
the data span the "gray area" of quantification. Start- 
ing values for the maximum likelihood estimator (MLE) 
procedure, which in this case are themselves quite good 
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Figure 1. Concentration of Cadmium Versus Absorption by 
AAS. The dots represent the measured values, the solid line is 
the calibration curve estimated by maximum likelihood using 
model (1.5), and the dashed lines form an estimated predic- 
tion envelope using (3.4) and (3.5) as appropriate. 
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Figure 3. Residuals for Cadmium Calibration. The dots rep- 
resent the differences between measured values and the pre- 
dicted values from Model (1.5) and the dashed lines form 
an estimated prediction envelope using (3.4) and (3.5) as 
appropriate. 
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Table 4. Toluene Amounts by GC/MS 

Toluene 
amount (pg) Peak area 

4.6 29.80 16.85 16.68 19.52 
23 44.60 48.13 42.27 34.78 

116 207.70 222.40 172.88 207.51 
580 894.67 821.30 773.40 936.93 

3,000 5350.65 4942.63 4315.79 3879.28 
15,000 20718.14 24781.61 22405.76 24863.91 

Table 6. Initial Estimates From Pooled Data and Final 
Parameters by MLE for Toluene Data 

Parameter Starting value Final value 

a -1.6 11.51 
p 1.546 1.524 
aT, .10 .1032 
a~ 6.0 5.698 

estimates of the parameters, are shown in Table 3. Starting 
values for the regression parameters a and , were derived 
by ordinary linear regression of the absorbance measure- 
ments on the concentration. The starting value for the 
standard deviation ra of zero measurements was estimated 
from the two lowest concentrations because there appears 
not to be an upward trend until the third highest concentra- 
tion. A starting value for the standard deviation of the log 
absorbances for high concentrations oa, which is approxi- 
mately the coefficient of variation, was derived by pooling 
the highest four levels, where the CV appears constant. 
These initial estimates are of such high quality that they 
are scarcely changed by the MLE iterations. Final values 
are also shown in Table 3. Note that the calculation is not 
extremely sensitive to the starting value because the same 
optimum was arrived at from a = 0, -B = 2, cr, = .03, 
and ao = .4, for example. Somewhat plausible values 
must be used, however, to avoid numerical instability. 

The results are shown graphically in Figure 1, which 
plots the data, the calibration curve, and an estimated en- 
velope; Figure 2, which shows the actual and predicted 
standard deviation; and Figure 3, which shows the resid- 
uals from the model fit. 

If we now treat these estimated parameters as known, 
we can use the model for further analysis. For example, 
if the limit of detection is defined as the absorbance (and 
associated implied concentration) that falls three standard 
deviations above 0, we find that it lies at about .4 ppb. 

Confidence intervals for concentration can be derived 
using the methods of Section 3.2. For example, with the 
parameters estimated for the cadmium data, an absorbance 
of 6 implies an estimated concentration of 2.75 ppb, with 
95% confidence interval (2.47, 3.04). This is almost sym- 
metric, with half widths of .28 and .29. An absorbance of 
50 implies an estimated concentration of 21.76 ppb, with 

Table 5. Standard Deviation of Peak Area and Log Peak Area 

Toluene amount Peak area std. dev. Log peak area std. dev. 

4.6 6.20 .2719 
23.0 5.65 .1387 

116.0 21.02 .1080 
580.0 73.19 .0858 

3,000.0 652.98 .1427 
15,000.0 2005.02 .0878 

95% confidence interval (20.69, 22.88) and half-widths 
1.07 and 1.12. A normal approximation using Equation 
(2.3) yields confidence intervals of (2.49, 3.01) for an ab- 
sorbance of 6 and (21.23, 22.29) for an absorbance of 
50. The approximation is quite acceptable for the low ab- 
sorbance but not for the higher one. For the absorbance of 
50, an acceptable approximation is gained by using the ap- 
proximate lognormality of the measurements at high lev- 
els, leading to a 95% confidence interval of (20.72, 22.85). 
Note, however, that there is no satisfactory alternative to 
the exact confidence interval provided by the new model 
that is accurate over the entire range of measurements. 

4.2 Toluene by GC/MS 

The instrument used here was a Trio-2 GC/MS (VG 
Masslab) with electron ionization at 70 electron volts with 
a 30-meter DB-5 GC column. Table 4 shows an analy- 
sis of amount of toluene by GC/MS for known amounts 
of from 4.6 picograms to 15 nanograms in 100 utL of 
extract. (1 picogram in 100 ,uL corresponds to a concen- 
tration of .01 ppb.) The quantitation is done by peak area 
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Figure 4. Concentration of Toluene Versus Peak Area by 
GC/MS. The dots represent the measured values, the solid 
line is the calibration curve estimated by maximum likelihood 
using Model (1.5), and the dashed lines form an estimated 
prediction envelope using (3.4) and (3.5) as appropriate. Note 
the log-log scale. 
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Table 7. Predicted Standard Deviations From New Model and 
From Linear Regression of the Standard Deviation on the Mean 

Mean Peak area Predicted std. Predicted std. dev. 
peak area std. dev. dev. from (2.5) from linear regression 

20.7 6.20 5.74 46.60 
42.4 5.65 6.76 48.48 

202.6 21.02 19.25 62.29 
856.6 73.19 92.13 118.68 

4622.1 652.98 475.65 443.37 
23192.4 2005.02 2378.08 2044.64 

o 

in - 

50 500 5000 

Mean Peak Area 

Figure 5. Actual and Predicted Standard Deviation for 
Toluene by GC/MS. The dots represent the standard devia- 
tion of the replicates and the solid line is the predicted stan- 
dard deviation using (3.4) and (3.5) as appropriate. Note the 
log-log scale. 

at m/z 91. The relationship between amount and peak 
area is satisfactorily linear and the behavior of the errors 
is generally consistent with the new model as shown in 
Table 5. Starting values were derived from ordinary lin- 
ear regression and from an examination of the standard 
deviations of the raw and logged data. The MLE esti- 
mation gives apparently acceptable results as shown in 
Table 6. 

The results are shown graphically in Figure 4, which 
plots the data, the calibration curve, and an estimated en- 
velope; Figure 5, which shows the actual and predicted 
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Figure 6. Residuals for Cadmium Calibration. The dots rep- 
resent the ratios between measured values and the predicted 
values from Model (1.5) and the dashed lines form an esti- 
mated prediction envelope using (3.4) and (3.5) as appropri- 
ate. Note the log-log scale. 

standard deviation; and Figure 6, which shows the resid- 
uals from the model fit. These plots are all on a log-log 
scale. 

A comparison is given in Table 7 between the predicted 
standard deviation of the peak area from the model devel- 
oped in this article and the predicted standard deviation 
from a variance function in which the standard deviation 
is a linear function of the mean. Both fit well for high con- 
centrations, but the linear function is quite inaccurate for 
lower concentrations. For these large ranges, it appears 
that the new model fits the behavior of the data better. 

5. CONCLUSION 

In this article we have provided a new model for analyt- 
ical error that behaves like a constant standard deviation 
model at low concentrations and like a constant CV model 
at high concentrations. The importance of this new model 
is that it provides a reliable way to estimate the precision 
of measurements that are near the detection limit so that 
they can be used in inference and regulation. Although 
the illustrations used in the article are for linear calibration 
analyses, the model itself is flexible enough to be used in a 
wide variety of situations, including nonlinear calibration, 
censored data, and added-standards methods. 
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APPENDIX A: THE HORWITZ TRUMPET 

Horwitz (1982; Horwitz et al. 1980) examined over 150 
independent Association of Official Analytical Chemists 
interlaboratory collaborative studies covering numerous 
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topics from drug preparations and pesticide formulations 
(at the high concentration end) to aflatoxin (at the low 
end). Over these studies, there was a pattern to the inter- 
laboratory CV that Hall and Selinger (1989) described as 
the Horwitz trumpet. The average CV of the interlabo- 
ratory errors increased from a few percent for concentra- 
tions in the double-digit percentage range, to about 50% 
for concentrations in the 1 ppb range. Horwitz suggested 
an empirical formula relating the concentration /z to the 
coefficient of variation CV(/u) [and therefore the precision 
r (/ )] as follows: 

CV(/,) = .006/I- 5 (A. 1) 
and 

r (/L) = .006,/5. (A.2) 

After an analysis of Horwitz's data using a binomial model 
with variable apparent sample size, Hall and Selinger sug- 
gested a similar formula: 

CV(/) = .02/- 15 

and 
r (/z) = .02/'85. 

(A.3) 

(A.4) 

Both the Horwitz trumpet and the present article sug- 
gest an increase in the CV at low concentrations; however, 
there are several important differences. First, Horwitz 
was interested in the variation from laboratory to labo- 
ratory, whereas the model in this article is intended for 
intralaboratory precision (there is no reason why it should 
not apply also across laboratories, however). Second, 
and more important, Horwitz was describing how the 
precision changes when one moves from one analytical 
method intended for a certain range of concentrations to 
another method intended for a different range. The two- 
component error model is for a single analytical method 
across its useful range. There is no reason why one model 
cannot be used within methods and a different one between 
methods. In the language of this article, Horwitz had a 
model for how a, changes with the analytical method, 
but the two-component model describes how the preci- 
sion changes within a given method as the concentration 
approaches the detection limit of that method. 

It is of particular note that the Horwitz trumpet cannot 
be used to serve the purpose of this article in describing 
the transition of the error structure in a given analytical 
method as the concentration changes from high levels to 
those near the detection limit. This is because the Horwitz 
model in both its original form and in Hall and Selinger's 
emendation imply that the standard deviation of a mea- 
surement at low levels approaches 0. In particular, if used 
inappropriately to describe the interlaboratory error under 
zero concentration, this model would imply zero error. In 
fact, most laboratories might report the compound as "not 
detected," but this is a far cry from zero error. 

In summary, both the Horwitz trumpet and the two- 
component error model have a proper place in understand- 
ing the errors of analytical method. The former is useful 

to describe the way in which the size of the errors from 
analytical methods change as the method itself and the 
intended range of concentration changes. The latter, the 
focus of this article, allows better estimation of quantita- 
tion error for a given analytical method for measurements 
within a few multiples of the detection limit. 

APPENDIX B: COMPUTATIONAL ISSUES 
IN ESTIMATION 

Actually performing the maximization of the likelihood 
requires the numerical optimization of a numerically in- 
tegrated likelihood. For the numerical integration, we 
used a Gauss-Hermite rule with centering depending on 
a second-order Taylor approximation to the logarithm of 
the integrand. This led to highly accurate results. Specif- 
ically, we need to approximate 

o e1 e-r12/(2(2) e-(x-el)2/(2,?)d . 
OO 2r cr, e 

(A.5) 

Gauss-Hermite integration is a form of Gaussian integra- 
tion for use with a kernel of the form w(x) = exp(-x2/2) 
(Davis and Rabinowitz 1984). One approximates an inte- 
gral 

I f(x)w(x)dx 
00 

by 

(A.6) 

(A.7) 
m 

E wif(xi), 
i=1 

where the Gaussian points xi and weights wi can be 
obtained from a variety of computer programs. (Davis 
and Rabinowitz 1984; IMSL Library 1989; NAG Library 
1987). This is exact when f(x) is a polynomial of degree 
2m + 1 or less. 

The Equation (A.5) can be transformed to resemble 
(A.6) by a linear transformation. In fact, we transform 
(A.5) so that it resembles w(x) = exp(-x2/2) by match- 
ing the first two derivatives of the logarithm at the mode. 
A function like 

g(x) = e-(x-o)2/2k2 

satisfies 

d log(g(x)) 
= -(x 

- 
xo)/k2 dx 

and 

d2 log(g(x)) 
dx2 = -l/k2. 

Then xo is a 0 of d log(g(x))/dx, and 

k = d2 log(g(x)) -1/2 
- dx2 J X =X 

k 

=~~~~~~~~~~ --X 
2 

(A.8) 

(A.9) 

(A.10) 

(A.11) 

Thus, if we match the integrand of (A.5) in this fashion 
and transform using r* = (r - ro)/k, we approximate 
the form of the kernel. 
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Now the log of the integrand of (A.5) is 

h(r)= -log(27raa,) - 2/(2 2)-(x - Ie")2/(2 2). 

Then 

h'(rl) = -r/a2 + gle7(x - lte")/oa2 (A.13) 

and 

h"(r) = -1 /2 + ,uLe(x - ,ue)/Or2 -_ 2e2 /or2. (A.14) 

We find a root of Equation (A.13) numerically and use the 
associated transformation to approximate the integral. 

This procedure results in fairly quick calculation of an 
accurate approximation of the likelihood for use in max- 
imum likelihood estimation. In the calculations in this 
article, we use a 12-point approximation. The numerical 
optimization was performed with a quasi-Newton method 
using BFGS rank-two updates and a trust region approach 
(Dennis and Schnabel 1983). The implementation used 
was the IMSL routine DUMINF (1989). Starting values 
for the iterations when the model is in the simple form (1.4) 
can be derived from two simple calculations. First, a, can 
be estimated by the standard deviation of zero or near-zero 
replicates. Then, a, can be estimated by the standard de- 
viation of the logarithms of some high concentration. For 
the calibration form (1.5), initial estimates of a and f can 
be derived from linear regression of the response on the 
log concentration. 

[Received June 1992. Revised July 1994.] 
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